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The theoretical basis is provided for the thermometric method of determining a 
group of thermophysical properties in the quasi-steady-state regime. 

The solution of the one-dimensional heat-conduction problem for an infinite homogeneous 
plate of thickness 2H lies at the basis of the determination of the thermophysical properties 
(TPPs). The rate of change of the temperature at the boundaries of the plate is specified 
to be uniform and constant (b = const). In this case, naturally, the difference between the 
temperatures of the boundaries should also be constant. Here the boundary conditions are 
formulated as follows: 

T(x, ~= O)= To,+O,5(ro , - -To , )  1 + 
(1) 

T ( x : = H ,  ~ ) = T o , + b %  T ( x = - - H ,  ~ )=To ,+b~ .  

In order to solve this problem, use is made of the method of superposition of the solu- 
tions of two subsidiary problems with the following boundary conditions: for the first sub- 
sidiary problem: 

T(x ,  T=O)=To~,  T ( x = H ,  ~ = T % + b ~ ,  T ( x = - - H ,  T ) = T % + b %  

and for the second subsidiary problem, 

~ OT (x = H, "O 
- -  = qo = const, T (x = - -  H, -c) = 0. 

Ox 

The solutions of each of these subsidiary problems with respect to the temperature and 
temperature gradient are known [i, 2]. Their superposition leads to expressions for the re- 
quired functions for the temperature and temperature gradient respectively of the main prob- 
lem: 

where An 

T(x' 'O]= T~176 "-L" T~176 X'~" bHZ [ ' 2 a - -  1 _~_) + 

-t- bH2 ~ ,  An cos (b~,~X) exp ( - -  ~ Fo), 
a ~-'=l ~n 

Or(x, "c) bH oo 
. . . . .  q o  + bH X . . . .  ~ A~ sin (l~X) exp ( - -  ~t2iFo), 

Ox % a a n=l 
nq-I 2 ---- ( - -  1) 2/~,,, ~,, : :  ( 2 n -  1)a/2, 

(2) 

(3) 

The nature of the changes of the functions (2) and (3) with time at various cross sec- 
tions over the thickness of the plate are shown in Fig. i. 

From an analysis of the exact solutions (2) and (3) of the main problem which have been 
obtained, it can be concluded that with increase of time the contribution of the terms with 
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Fig. i. Nature of the changes of temperature (a) and of tem- 
perature gradient (b) with respect to time for various cross 
sections over the thickness of the plate, i-5) Graphs of the 
function T = f(Fo) for x/H = i, 0.8, 0, -0.8, -i, respective- 
ly; 6-16) Graphs of the function 8T/3x = f(Fo) for x/H = i, 
0.8, 0.6, 0.4, 0.2, 0. -0.2, -0.4, -0.6, -0.8, -I, respectively. 

the sums of the series decreases, and for times which correspond to values of the Fourier 
number Fo ~ 2, they can be neglected, as can be seen from Fig. i. Beginning at this time, 
a quasi-steady-state thermal regime is established in the plate under the boundary conditions 
(i), and the functions (2) and (3) for any cross section of the plate can be approximated by 
the following expressions with an error not exceeding 0.25%: 

T(x, ~ ) =  T~176 a ( F ~  ~ To,--To~2 x+bH22a" X~' (4 )  

__ OT (x, ~) = qo_+ b____H_.H X. (5)  
Ox ~ a 

Figure 2 shows the nature of the change of the functions for the temperature (4) and 
for the temperature gradient (5) at a value Fo = 2 as a function of the cross section X, the 
rate of change of the temperature b, and the initial specified temperature difference T01 - 
T02 between the boundaries of the plate. 

From the expressions (4) and (5) and taking into account that q0 = 0.5% (T01 -- T02)/H, 

a relationship is obtained for the temperature difference between two arbitrary cross sec- 
tions x I and x 2 over the thickness of the plate: 

T 1 - -  T~ = T~ (Xl) - -  T 2 (x2) H (Xl - -  X~) (qa + q2), (6 )  
22 

which gives a formula for determining the thermal conductivity: 

Z = 0,SH (Xl - -  Xz) (q~ + q2)/(T~ - -  T~). ( 7 ) 

A formula for the volumetric heat capacity which is obtained by analogous means from 
the expression for the difference of the heat flux densities through the cross sections being 
considered has the following form: 

c9 = (ql -- q2)/(bH (XI -- X~)). (8) 

The known r e l a t i o n s h i p s  i n t e r r e l a t i n g  a l l  t h r e e  t h e r m o p h y s i c a l  c h a r a c t e r i s t i c s  make i t  
p o s s i b l e  when (7 )  and (8 )  a r e  known t o  o b t a i n  a f o r m u l a  f o r  d e t e r m i n i n g  t h e  t e m p e r a t u r e  con -  
d u c t i v i t y :  

0,5B 2 (Xl - -  X~) z (ql + q2) 
a = (9)  

(T~ -- T~) (q~ - -  q~) 

The results obtained with respect to the temperature make it possible to obtain a volume- 
average temperature T(x) defined by the integral 

T (x) dx, 
H (X~ - -  x ~ )  4 

i n  which  t h e  f u n c t i o n  T ( x )  h a s  t h e  fo rm o f  Eq. ( 4 ) .  
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F i g .  2. N a t u r e  o f  t h e  changes  o f  t h e  t e m p e r a t u r e  and 
t e m p e r a t u r e  g r a d i e n t  f o r  v a r i o u s  r a t e s  o f  change  o f  
t h e  t e m p e r a t u r e  a t  Fo > 2 and T01 - To2 = 0 ( a )  and 
To1 - T02 = 25 ( b ) .  
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F i g .  3. S k e t c h  o f  t h e  d e v i c e  and o f  t h e  d i s t r i b u t i o n s  o f  t h e  
temperature (a) and of the heat flux density (b) over the 
thickness of the device. 

The formula for calculating the reference temperature which is obtained after a number 
of rearrangements has the form: 

~ef=T~+T1--T---------~2( 1 + 3  ql+q~q~ )" 

The results obtained above for a single-layered plate can be applied to multilayered 
plates by taking into account the differences in the thermophysical properties of the various 
layers through their reduction to equivalent thicknesses, as recommended in [2]. 

In carrying out the recommended procedure the sample of the material to be investigated 
is placed between two blocks with programmable linear temperature changes with a specified 
constant temperature difference between the surfaces of the sample. Devices for measuring 
the temperatures and heat fluxes are placed between the blocks and the surfaces of the sample. 
A sketch of the device and of the distributions of the temperature and heat flux density over 
the thickness of the sample in the quasi-steady-state regime are shown in Fig. 3. Thermo- 
couples can be used, for instance, as the devices for measuring the temperatures, and thermo- 
electric heat-measuring devices based on the auxiliary wall principle for measuring the heat 
flux densities [3]. 

By analyzing the accuracy potential of the measurement methods being considered the fol- 
lowing conclusions can be drawn. 

I. The sum of the heat fluxes appearing in Eq. (7) can be determined from the readings 
of two heat measuring devices placed at equal distances from the surfaces of the sample with- 
out error since the sum of the heat fluxes through any pair of cross sections equidistant 
from the central cross section of the sample (x = 0) is the same, i.e., 

ql @ q~ = ql~m@ q~me = idem. (10)  

2. The t e m p e r a t u r e  d i f f e r e n c e  be tween t h e  s u r f a c e s  o f  t h e  sample  which  a p p e a r s  in  Eq. 
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(7) is not equal to the temperature difference measured by the thermocouples, since the co- 
ordinates of the thermocoup!es junctions (xi) and of the adjacent surfaces of the sample 
(xi sam) do not exactly coincide, as seen from Fig. 3, i.e., x isam # xi at i = i and 2. This 
is caused by the presence of an interlayer between them which has a thermal resistance, as 
a result of which the temperatures measured by the thermocouples are not equal to the true 
temperatures of the samples surfaces, i.e., Time - Ti # 0 for i = i and 2 (see Fig. 3a). 

Thus, in order to ensure the correct determination of the thermal conductivity it is 
necessary to introduce a temperature correction 6T which takes into account the thermal re- 
sistances of the ballast interlayers which have been referred to, as a result of which Eq. 
(7) is converted to the form 

% = 0 ,5 / / (X,  ~am-- X~sa~ (ql n~ qz) 

(Tim e - -  T~ m~ - -  6T 

By i n t r o d u c i n g  t h e  e q u i v a l e n t  t h i c k n e s s e s  in  ( 6 ) ,  t a k i n g  i n t o  a c c o u n t  t h e  m u l t i l a y e r e d  
n a t u r e  o f  t h e  s y s t e m  b e i n g  c o n s i d e r e d ,  i t  i s  found  t h a t  

' H (X~sam-- X~)e~ q~ + q~ 6 T  = H ( X 1 - - X l s a ~ e q u  ql Ay ql  ~_ . _ _  (11)  
2 ~ 2 ' 

where q~ and q~ are the heat flux densities at the cross-sections x I and x2; ql and q2 are 
the corresponding values at the cross sections x~ sam. and x 2 sam" 

If the expressions H(IX i - X isaml)equ/l are denoted by R i (i = i, 2), each of which 
takes into account the thermal resistance of an interlayer between the section at which the 
thermocouple junction is fixed and the corresponding sample surface, then the temperature 
correction (Ii) can be written in terms of a sum of the products of the thermal resistances 
of these interlayers and half the sum of the heat flux densities through the cross sections 
bounding the interlayers, i.e., 

6T = R~ q~ + q~ + R2 q~ + q~ 
2 2 

Under conditions in which the junctions of both thermocouples are placed identically 
and are at equal distances from the respective sample surfaces, it can be assumed that R I = 
R 2 = R, and also taking into account condition (i0) for the linearity of measuring the heat 
flux densities in the quasi-steady-state regime, the temperature correction can be expressed 
as follows: 

aT= R qi +' q~ - -  R q , - } - q 2  
2 2 ' 

and the calculation formula (7) becomes 

_ 0,5//(X~a m- X2san~ (ql + q2) 

(Time - -  Tzme) - -  R (ql q- q2) 

3. The difference in the heat flux densities passing through the surfaces of the sample 
which appears in Eq. (8) is not equal to the difference of the heat flux densities measured 
by means of the heat flow meters, which have finite thicknesses, as can be seen clearly from 
Fig. 3b. This comes about because the heat flux measured under unsteady-state conditions 
by means of a heat flow meter is proportional to the integral mean flux passing through the 
surfaces of the heat flow meter. Under quasi-steady-state conditions, this heat flux is pro- 
portional to the integral mean flux passing through the surfaces of the heat flow meter. Un- 
der quasi-steady-state conditions, this heat flux is proportional to the arithmetic mean of 
the heat fluxes entering and leaving the heat flow meter, i.e., it is equal to the heat flux 
through the central cross section of the heat flow meter. 

Thus, in order to ensure the correct determination of the heat capacity, it is necessary 
to introduce a heat flux correction in Eq. (8) which takes into account the heat capacities 
of the ballast layers interposed between the central cross sections of the heat flow meters 
and the corresponding sample surfaces (see Fig. 3). As a result of this, Eq. (8) is rear- 
ranged to the form 

( q l m e  - -  q2'nm) - -  ~q c p =  
bH (X~mm-- X~a~ 
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Fig .  4. Sketch  of  dev ice  wi th  a d d i t i o n a l l y  i n t roduced  measur-  
ing devices and distributions of the temperature (a) and of 
the heat flux density (b). 

where the heat flux correction 6q can be expressed as follows: 

~q = (qlme ~ ql) @ (q~-- q~me) = bcpH [(Xl - -  Xlsam) e~l+ (Xe~m-- X2)equl. 

Each of the products Ci = c0H(iXi- X~s l?e~ takes into account the volumetric heat 
capacity of one respective ballast layer .~a=m ~,~, reduced to an equivalent thickness. Un- 
der conditions in which the heat flow meters are made identical to each other and are placed 
symmetrically relative to the middle cross section of the sample, it can be assumed that 
C I = C 2 = C, and the heat flux correction can then be expressed as follows: 

~q = b (Cl + C2) = bC~, 

and the calculation formula (8) reduces to the form 

= ( q l m e -  q~m~-- 6q 1 ( q~me ~ q~me C@ cp 
bH (Xlsam-- X2sa~ = H (Xlsam -~ X 2 ~  • ~ b 

Thus, t he  v a l i d i t y  of  t he  d e t e r m i n a t i o n  of  the  t he rmophys i ca l  p r o p e r t i e s  depends on the  
precision of the determination of the temperature correction 6T and the heat flux correction 
6q. When operating over a wide range of temperatures it is difficult to take these correc- 
tions into account correctly because of their dependence on the temperature. 

In order to improve the accuracy a differential method has been developed for correct- 
ing the measured temperatures and heat flux densities. This consists of introducing addi- 
tional measuring elements into the equipment, the readings of which are proportional to the 
change in the temperature and heat flux which arises because of the presence of the ballast 
thermal resistance or heat capacity. A sketch of the device with the additional heat flow 
meters and thermocouples which need to be introduced is shown in Fig. 4, together with the 
temperature and heat flux distributions over the thickness of the system for the quasi-steady- 
state stage. 

The correction of the measured temperature can be accomplished by using two pairs of 
differentially connected thermocouples, 3 and 4, and 5 and 6, respectively. The junctions 
of the thermocouples 3 and 5, 4 and 6 are placed in pairs at the same distances from the re- 
spective surfaces of the sample. In each differential thermocouple the junctions are sepa- 
rated by simulated interlayers possessing thermal resistances of R4- ~ and Rs_ 6, respectively, 
so that 

RI R~ 8T 
R3-~ Rs-~ AT~_3q-AT~_6 

When allowance is made for the relative temperature correction, the calculation formula (7) 
is transformed to 

= 0 , 5 H ( X ~ a m - - X 2 ~ a ~  (qlme @ q2m4 (12) 

ATl-~me -- ~ (AT~-a q- ATs-6) 

Let us now return to the volumetric heat capacity. The quantity of heat accumulated 
by the ballast layers mentioned above (between the middle cross section of the heat flow 
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meters of the main pair form check elements for the interlayers between the central cross 
sections of the contacting heat flow meters. In this case, the sum of the differences of 
the heat fluxes measured respectively by the pairs of heat flow meters T1 and T3, T2 and T4, 
is proportional to the quantity of heat accumulated by the check element. Here it is also 
obvious that 

6q C1 = - - = ? .  
Aq~-i ~ Aq2-~ C~ 

When a l lowance  i s  made f o r  the  hea t  f l u x  c o r r e c t i o n  the  c a l c u l a t i o n  formula (8) f o r  the  
v o l u m e t r i c  hea t  c a p a c i t y  can be w r i t t e n  as 

1 
c9 --  [(qrme-- q~me ~ - -  ? (Aq3-1 + Aq~_~)]. (13) 

bH 

When the  c o n d i t i o n s  of  i d e n t i c a l  p lacement  of  the  thermocouple  j u n c t i o n s  and s i m i l a r i t y  
of  the  t h i c k n e s s e s  of  the  s imu la t ed  i n t e r l a y e r s  ( i . e . ,  t he  i n t e r l a y e r s  between the  j u n c t i o n s  
in both  d i f f e r e n t i a l  thermocouples  3-4 and 5-6)  a re  s a t i s f i e d ,  and a l s o  the  hea t  f low meters  
a re  p l a c e d  s y m m e t r i c a l l y  and the  measurements a re  made under the  c o n d i t i o n s  T01 - T02 ~ 10 K, 
then both of the relative corrections K and ~ are independent of the temperature. Their 
values can be determined experimentally in a "blank run" test, i.e., in the absence of a sam- 
ple between the heating plates, which corresponds to the condition X I sam - X2 sam = 0. 

By introducing the relative temperature and heat flux corrections, the temperature and 
heat flux differences measured on the surfaces of the sample are completely corrected. How- 
ever, an important drawback of the quasi-steady-state method remains, namely, the need to 
measure the rate of change of the temperature, which can be accompanied by considerable er- 
ror. The presence of two pairs of thermocouples makes it possible to avoid the determination 
of the rate of change of the temperature in the course of the experiment, and to use instead 
the results of the measurements of the changes of the heat flux density in the check elements 
[4]. 

The following system of equations can be written for a single-layer plate (see Fig. 4): 

q8 - -  ql = C3_~b, ql - -  q2 = (C~_2 + qam) b, qz - -  q~ = C2_~b, (14) 

where Csa m = c0H(X I sam - X2 sam) is the volumetric heat capacity of the sample: Ci_ 2 = C 2 is 
the summed volumetric heat capacity of the ballast layers which occur between the surfaces 
of the sample and the central cross sections of the heat flow meters adjacent to them; C3_ ~ 
and C2_ 4 are the effective volumetric heat capacities of the layers occurring between the 
central cross sections of the heat flow meters T1 and T3, T2 and T4, respectively, which are 
in pairwise contact with each other, i.e., the check elements. 

The solution of the system of equations (14) gives an expression for the rate of change 
of the temperature: 

b = (qs--qa)~-(q~--q~) = Aqn_~+Aq2_~ 
C~_, + C~_~ C~ ' 

and s u b s t i t u t i o n  of  t h i s  i n to  Eq. (12) l e ads  to  the  f o l l o w i n g  c a l c u l a t i o n  equa t i on  f o r  the  
volumetric heat capacity of the sample: 

C~ ( q,me--q2me _ , )  (15) 
c9 = H ( X l s a ~ _ X 2 s a ~  Aq3-1 + Aq~_~ 

By us ing  the  c a l c u l a t i o n  e q u a t i o n s  a f t e r  c o r r e c t i o n  (Eqs. (12) and ( 1 5 ) ) ,  t he  c a l c u l a -  
t i o n  e q u a t i o n  fo r  the  t e m p e r a t u r e  c o n d u c t i v i t y  can be r e a r r a n g e d  to  

0,SH 2 (Xmam-- X~a~ z (q<me + q~me) 

a = ~ A T 1  2me--• / qlme--q~me __ ?) (16) 
' - Aq3-1 @ Aq2-~ 

The present method for determining the thermophysical properties is a differential meth- 
od, on the one hand, since use is made of differences of the readings of the devices for mea- 
suring the heat fluxes. On the other hand, the characteristics to be measured (a and co) 
are found from the ratios of the quantities of heat which are accumulated by the sample of 
the material being investigated and by the check elements, the thermophysical properties of 
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which are known, i.e., by a bridge method [5]. Thus, a new method has been developed [4] 
for determining the group of thermophysical properties which can be classified as a differen- 
tial-bridge thermometric method, the calculation formulas for which are given by equations 
(12), (15), and (16). 

NOTATION 

x, ~, local values of the spatial coordinate and time; H, half-thickness of plate; T, 
temperature; T01, T02, initial constant temperatures of surfaces; b, rate of change of tem- 

perature; q, heat flux density; q0, initial heat flux density through surface of plate whose 
coordinate is x = H; ql, q2, heat flux densities at cross sections x = xl, x = x2; %, thermal 
conductivity; a, temperature conductivity; X = x/H, dimensionless coordinate; Fo = a~/x 2, 
Fourier number; cp, volumetric heat capacity, co = %/a; 6T, 6q, temperature and heat flux 
corrections; K, 7, relative temperature and heat flux corrections; R, thermal resistance. 
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METHOD FOR DETERMINING THE THERMOPHYSICAL CHARACTERISTICS 

OF ORTHOTROPIC BODIES 

Yu. M. Kolyano UDC 536.2.02 

The solution for the inverse coefficient problem of heat conduction for an ortho- 
tropic body is proposed. 

There exists a nondestructive monitoring method for determining the coefficients of 
thermal conductivity of orthotropic bodies [i]. In the method a standard sample (isotropic 
half-space), whose thermal conductivity is known, is heated together with the sample of in- 
terest, placed in series, with a mobile point source of heat moved along the surface of the 
samples at a constant rate and the excess limiting temperature of the surface of the samples 
along the line of heating is measured with the help of a temperature sensor moved at the same 
rate as the source at a fixed distance from it. The sample under study is made with two mu- 
tually perpendicular flat surfaces, perpendicular to its principal axis of heat conduction, 
and scanning over the flat surfaces along each of the three principal axes of heat conduc- 
tion is performed in sequence. The coefficient of thermal diffusivity and the volume heat 
capacity are not determined 

To determine the complex of thermophysical characteristics of orthotropic bodies by the 
method of nondestructive monitoring, we shall examine three samples in the form of ortho- 
tropic half-spaces z ~ 0, x ~ 0, y ~ 0, over whose surfaces z = 0, x = 0, and y = 0 a source 
of heat with power q [W] and a sensor for measuring the temperature at a fixed distance s 
for the heat source (Fig. i) move with a constant velocity v in the positive direction along 
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